Advertisement
Advances in Pediatrics

Proteomics in Pediatric Research and Practice

  • Stephen W. Hunsucker
    Affiliations
    Department of Pediatrics, School of Medicine, University of Colorado at Denver and Health Sciences Center, 12801 East 17th Avenue, Aurora, CO 80010, USA
    Search for articles by this author
  • Frank J. Accurso
    Correspondence
    Corresponding author. Children's Hospital, Box B395, 1056 East 19th Avenue, Denver, CO 80218.
    Affiliations
    Department of Pediatrics, School of Medicine, University of Colorado at Denver and Health Sciences Center, 12801 East 17th Avenue, Aurora, CO 80010, USA

    Mike McMorris Cystic Fibrosis Research and Treatment Center at the Children's Hospital, Box B395, 1056 East 19th Avenue, Denver, CO 80218, USA
    Search for articles by this author
  • Mark W. Duncan
    Affiliations
    Department of Pediatrics, School of Medicine, University of Colorado at Denver and Health Sciences Center, 12801 East 17th Avenue, Aurora, CO 80010, USA

    Division of Endocrinology, Metabolism and Diabetes, School of Medicine, University of Colorado at Denver and Health Sciences Center, 12801 East 17th Avenue, Aurora, CO 80010, USA
    Search for articles by this author
      Proteomics offers insight into studies of human disease including the opportunity to: define underlying mechanisms of disease; determine disease susceptibility; stage disease and monitor its progression; assess susceptibility to, or identify exacerbation; select treatment and monitor response to it; and to assist in the performance of clinical trials. Although the common perception is that proteomics is primarily a tool for identifying biomarkers, this view sells the significant potential of this evolving technology short of its full potential.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Pediatrics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Wasinger V.C.
        • Cordwell S.J.
        • Cerpa-Poljak A.
        • et al.
        Progress with gene product mapping of the mollicutes: Mycoplasma genitalium.
        Electrophoresis. 1995; 16: 1090-1094
        • Granger C.B.
        • Van Eyk J.E.
        • Mockrin S.C.
        • et al.
        National Heart, Lung, and Blood Institute Clinical Proteomics Working Group report.
        Circulation. 2004; 109: 1697-1703
        • Baggerly K.A.
        • Morris J.S.
        • Edmonson S.R.
        • et al.
        Signal in noise: evaluating reported reproducibility of serum proteomic tests for ovarian cancer.
        J Natl Cancer Inst. 2005; 97: 307-309
        • Ransohoff D.F.
        Lessons from controversy: ovarian cancer screening and serum proteomics.
        J Natl Cancer Inst. 2005; 97: 315-319
        • Robbins R.J.
        • Villanueva J.
        • Tempst P.
        Distilling cancer biomarkers from the serum peptidome: high technology reading of tea leaves or an insight to clinical systems biology?.
        J Clin Oncol. 2005; 23: 4835-4837
        • Hu J.
        • Coombes K.R.
        • Morris J.S.
        • et al.
        The importance of experimental design in proteomic mass spectrometry experiments: some cautionary tales.
        Brief Funct Genomic Proteomic. 2005; 3: 322-331
        • Hortin G.L.
        The MALDI-TOF mass spectrometric view of the plasma proteome and peptidome.
        Clin Chem. 2006; 52: 1223-1237
        • Vitzthum F.
        • Behrens F.
        • Anderson N.L.
        • et al.
        Proteomics: from basic research to diagnostic application. A review of requirements and needs.
        J Proteome Res. 2005; 4: 1086-1097
        • Tang N.
        • Tornatore P.
        • Weinberger S.R.
        Current developments in SELDI affinity technology.
        Mass Spectrom Rev. 2004; 23: 34-44
        • Wright Jr., G.L.
        SELDI protein chip MS: a platform for biomarker discovery and cancer diagnosis.
        Expert Rev Mol Diagn. 2002; 2: 549-563
        • Xiao Z.
        • Prieto D.
        • Conrads T.P.
        • et al.
        Proteomic patterns: their potential for disease diagnosis.
        Mol Cell Endocrinol. 2005; 230: 95-106
        • Villanueva J.
        • Tempst P.
        OvaCheck: let's not dismiss the concept.
        Nature. 2004; 430: 611
        • Izbicka E.
        • Campos D.
        • Marty J.
        • et al.
        Molecular determinants of differential sensitivity to docetaxel and paclitaxel in human pediatric cancer models.
        Anticancer Res. 2006; 26: 1983-1988
        • de Bont J.M.
        • den Boer M.L.
        • Reddingius R.E.
        • et al.
        Identification of apolipoprotein A-II in cerebrospinal fluid of pediatric brain tumor patients by protein expression profiling.
        Clin Chem. 2006; 52: 1501-1509
        • Li Y.
        • Dang T.A.
        • Shen J.
        • et al.
        Identification of a plasma proteomic signature to distinguish pediatric osteosarcoma from benign osteochondroma.
        Proteomics. 2006; 6: 3426-3435
        • Combaret V.
        • Bergeron C.
        • Brejon S.
        • et al.
        Protein chip array profiling analysis of sera from neuroblastoma patients.
        Cancer Lett. 2005; 228: 91-96
        • He Q.Y.
        • Zhu R.
        • Ren Y.
        • et al.
        Serological protein profiling of neuroblastoma by ProteinChip SELDI-TOF technology.
        J Cell Biochem. 2005; 95: 165-172
        • Shah Z.A.
        • Jortani S.A.
        • Tauman R.
        • et al.
        Serum proteomic patterns associated with sleep-disordered breathing in children.
        Pediatr Res. 2006; 59: 466-470
        • Miyamae T.
        • Malehorn D.E.
        • Lemster B.
        • et al.
        Serum protein profile in systemic-onset juvenile idiopathic arthritis differentiates response versus nonresponse to therapy.
        Arthritis Res Ther. 2005; 7: R746-R755
        • Miller I.
        • Crawford J.
        • Gianazza E.
        Protein stains for proteomic applications: which, when, why?.
        Proteomics. 2006; 6: 5385-5408
        • Henzel W.J.
        • Billeci T.M.
        • Stults J.T.
        • et al.
        Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases.
        Proc Natl Acad Sci U S A. 1993; 90: 5011-5015
        • James P.
        • Quadroni M.
        • Carafoli E.
        • et al.
        Protein identification by mass profile fingerprinting.
        Biochem Biophys Res Commun. 1993; 195: 58-64
        • Mann M.
        • Hojrup P.
        • Roepstorff P.
        Use of mass spectrometric molecular weight information to identify proteins in sequence databases.
        Biol Mass Spectrom. 1993; 22: 338-345
        • Yates 3rd, J.R.
        • Speicher S.
        • Griffin P.R.
        • et al.
        Peptide mass maps: a highly informative approach to protein identification.
        Anal Biochem. 1993; 214: 397-408
        • Gevaert K.
        • Vandekerckhove J.
        Protein identification methods in proteomics.
        Electrophoresis. 2000; 21: 1145-1154
        • Alban A.
        • David S.O.
        • Bjorkesten L.
        • et al.
        A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard.
        Proteomics. 2003; 3: 36-44
        • Lilley K.S.
        • Friedman D.B.
        All about DIGE: quantification technology for differential-display 2D gel proteomics.
        Expert Rev Proteomics. 2004; 1: 401-409
        • Unlu M.
        • Morgan M.E.
        • Minden J.S.
        Difference gel electrophoresis: a single gel method for detecting changes in protein extracts.
        Electrophoresis. 1997; 18: 2071-2077
        • Wittmann-Liebold B.
        • Graack H.R.
        • Pohl T.
        Two-dimensional gel electrophoresis as tool for proteomics studies in combination with protein identification by mass spectrometry.
        Proteomics. 2006; 6: 4688-4703
        • Rabilloud T.
        Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains.
        Proteomics. 2002; 2: 3-10
        • Hoorn E.J.
        • Hoffert J.D.
        • Knepper M.A.
        The application of DIGE-based proteomics to renal physiology.
        Nephron Physiol. 2006; 104: p61-p72
        • Kakhniashvili D.G.
        • Griko N.B.
        • Bulla Jr., L.A.
        • et al.
        The proteomics of sickle cell disease: profiling of erythrocyte membrane proteins by 2D-DIGE and tandem mass spectrometry.
        Exp Biol Med (Maywood). 2005; 230: 787-792
        • Yocum A.K.
        • Busch C.M.
        • Felix C.A.
        • et al.
        Proteomics-based strategy to identify biomarkers and pharmacological targets in leukemias with t(4;11) translocations.
        J Proteome Res. 2006; 5: 2743-2753
        • Michiels J.J.
        • Berneman Z.
        • Gadisseur A.
        • et al.
        Classification and characterization of hereditary types 2A, 2B, 2C, 2D, 2E, 2M, 2N, and 2U (unclassifiable) von Willebrand disease.
        Clin Appl Thromb Hemost. 2006; 12: 397-420
        • Fehniger T.E.
        • Sato-Folatre J.G.
        • Malmstrom J.
        • et al.
        Exploring the context of the lung proteome within the airway mucosa following allergen challenge.
        J Proteome Res. 2004; 3: 307-320
        • Sloane A.J.
        • Lindner R.A.
        • Prasad S.S.
        • et al.
        Proteomic analysis of sputum from adults and children with cystic fibrosis and from control subjects.
        Am J Respir Crit Care Med. 2005; 172: 1416-1426
        • Roxo-Rosa M.
        • da Costa G.
        • Luider T.M.
        • et al.
        Proteomic analysis of nasal cells from cystic fibrosis patients and noncystic fibrosis control individuals: search for novel biomarkers of cystic fibrosis lung disease.
        Proteomics. 2006; 6: 2314-2325
        • Liu H.
        • Sadygov R.G.
        • Yates 3rd, J.R.
        A model for random sampling and estimation of relative protein abundance in shotgun proteomics.
        Anal Chem. 2004; 76: 4193-4201
        • Gygi S.P.
        • Rist B.
        • Gerber S.A.
        • et al.
        Quantitative analysis of complex protein mixtures using isotope-coded affinity tags.
        Nat Biotechnol. 1999; 17: 994-999
        • Hansen K.C.
        • Schmitt-Ulms G.
        • Chalkley R.J.
        • et al.
        Mass spectrometric analysis of protein mixtures at low levels using cleavable 13C-isotope-coded affinity tag and multidimensional chromatography.
        Mol Cell Proteomics. 2003; 2: 299-314
        • Li J.
        • Steen H.
        • Gygi S.P.
        Protein profiling with cleavable isotope-coded affinity tag (cICAT) reagents: the yeast salinity stress response.
        Mol Cell Proteomics. 2003; 2: 1198-1204
        • Yu L.R.
        • Conrads T.P.
        • Uo T.
        • et al.
        Evaluation of the acid-cleavable isotope-coded affinity tag reagents: application to camptothecin-treated cortical neurons.
        J Proteome Res. 2004; 3: 469-477
        • Ross P.L.
        • Huang Y.N.
        • Marchese J.N.
        • et al.
        Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents.
        Mol Cell Proteomics. 2004; 3: 1154-1169
        • Aggarwal K.
        • Choe L.H.
        • Lee K.H.
        Shotgun proteomics using the iTRAQ isobaric tags.
        Brief Funct Genomic Proteomic. 2006; 5: 112-120
        • Ong S.E.
        • Blagoev B.
        • Kratchmarova I.
        • et al.
        Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics.
        Mol Cell Proteomics. 2002; 1: 376-386
        • Nesvizhskii A.I.
        • Aebersold R.
        Interpretation of shotgun proteomic data: the protein inference problem.
        Mol Cell Proteomics. 2005; 4: 1419-1440
        • Aebersold R.
        • Mann M.
        Mass spectrometry-based proteomics.
        Nature. 2003; 422: 198-207
        • Domon B.
        • Aebersold R.
        Mass spectrometry and protein analysis.
        Science. 2006; 312: 212-217
        • Lin D.
        • Tabb D.L.
        • Yates 3rd, J.R.
        Large-scale protein identification using mass spectrometry.
        Biochim Biophys Acta. 2003; 1646: 1-10
        • Link A.J.
        Multidimensional peptide separations in proteomics.
        Trends Biotechnol. 2002; 20: S8-S13
        • Mann M.
        • Hendrickson R.C.
        • Pandey A.
        Analysis of proteins and proteomes by mass spectrometry.
        Annu Rev Biochem. 2001; 70: 437-473
        • McDonald W.H.
        • Yates J.R.
        Shotgun proteomics and biomarker discovery.
        Dis Markers. 2002; 18: 99-105
        • Peng J.
        • Elias J.E.
        • Thoreen C.C.
        • et al.
        Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome.
        J Proteome Res. 2003; 2: 43-50
        • Master S.R.
        • Bierl C.
        • Kricka L.J.
        Diagnostic challenges for multiplexed protein microarrays.
        Drug Discov Today. 2006; 11: 1007-1011
        • Fitzgerald S.P.
        • Lamont J.V.
        • McConnell R.I.
        • et al.
        Development of a high-throughput automated analyzer using biochip array technology.
        Clin Chem. 2005; 51: 1165-1176
        • Dufva M.
        • Christensen C.B.
        Diagnostic and analytical applications of protein microarrays.
        Expert Rev Proteomics. 2005; 2: 41-48
        • Kingsmore S.F.
        Multiplexed protein measurement: technologies and applications of protein and antibody arrays.
        Nat Rev Drug Discov. 2006; 5: 310-320
        • Haab B.B.
        Applications of antibody array platforms.
        Curr Opin Biotechnol. 2006; 17: 415-421
        • Becker K.F.
        • Metzger V.
        • Hipp S.
        • et al.
        Clinical proteomics: new trends for protein microarrays.
        Curr Med Chem. 2006; 13: 1831-1837
        • Hultschig C.
        • Kreutzberger J.
        • Seitz H.
        • et al.
        Recent advances of protein microarrays.
        Curr Opin Chem Biol. 2006; 10: 4-10
        • Wingren C.
        • Borrebaeck C.A.
        High-throughput proteomics using antibody microarrays.
        Expert Rev Proteomics. 2004; 1: 355-364
        • Fathman C.G.
        • Soares L.
        • Chan S.M.
        • et al.
        An array of possibilities for the study of autoimmunity.
        Nature. 2005; 435: 605-611
        • Chan S.M.
        • Ermann J.
        • Su L.
        • et al.
        Protein microarrays for multiplex analysis of signal transduction pathways.
        Nat Med. 2004; 10: 1390-1396
        • Utz P.J.
        Multiplexed assays for identification of biomarkers and surrogate markers in systemic lupus erythematosus.
        Lupus. 2004; 13: 304-311
        • Korf U.
        • Wiemann S.
        Protein microarrays as a discovery tool for studying protein-–protein interactions.
        Expert Rev Proteomics. 2005; 2: 13-26
        • Srivastava M.
        • Eidelman O.
        • Jozwik C.
        • et al.
        Serum proteomic signature for cystic fibrosis using an antibody microarray platform.
        Mol Genet Metab. 2006; 87: 303-310
        • Corthals G.L.
        • Wasinger V.C.
        • Hochstrasser D.F.
        • et al.
        The dynamic range of protein expression: a challenge for proteomic research.
        Electrophoresis. 2000; 21: 1104-1115
        • Anderson N.L.
        • Anderson N.G.
        The human plasma proteome: history, character, and diagnostic prospects.
        Mol Cell Proteomics. 2002; 1: 845-867
        • Kettman J.R.
        • Coleclough C.
        • Frey J.R.
        • et al.
        Clonal proteomics: one gene—family of proteins.
        Proteomics. 2002; 2: 624-631
        • Yang X.J.
        Multisite protein modification and intramolecular signaling.
        Oncogene. 2005; 24: 1653-1662
        • Banks R.E.
        • Dunn M.J.
        • Hochstrasser D.F.
        • et al.
        Proteomics: new perspectives, new biomedical opportunities.
        Lancet. 2000; 356: 1749-1756
        • Raffin-Sanson M.L.
        • de Keyzer Y.
        • Bertagna X.
        Proopiomelanocortin, a polypeptide precursor with multiple functions: from physiology to pathological conditions.
        Eur J Endocrinol. 2003; 149: 79-90
        • Stamm S.
        • Ben-Ari S.
        • Rafalska I.
        • et al.
        Function of alternative splicing.
        Gene. 2005; 344: 1-20
        • Sorek R.
        • Shamir R.
        • Ast G.
        How prevalent is functional alternative splicing in the human genome?.
        Trends Genet. 2004; 20: 68-71
        • Wong C.H.
        Protein glycosylation: new challenges and opportunities.
        J Org Chem. 2005; 70: 4219-4225
        • Brooks S.A.
        Protein glycosylation in diverse cell systems: implications for modification and analysis of recombinant proteins.
        Expert Rev Proteomics. 2006; 3: 345-359
        • Daniels M.A.
        • Hogquist K.A.
        • Jameson S.C.
        Sweet 'n' sour: the impact of differential glycosylation on T cell responses.
        Nat Immunol. 2002; 3: 903-910
        • Rudd P.M.
        • Elliott T.
        • Cresswell P.
        • et al.
        Glycosylation and the immune system.
        Science. 2001; 291: 2370-2376
        • Haltiwanger R.S.
        Regulation of signal transduction pathways in development by glycosylation.
        Curr Opin Struct Biol. 2002; 12: 593-598
        • Haines N.
        • Irvine K.D.
        Glycosylation regulates Notch signaling.
        Nat Rev Mol Cell Biol. 2003; 4: 786-797
        • Haltiwanger R.S.
        • Lowe J.B.
        Role of glycosylation in development.
        Annu Rev Biochem. 2004; 73: 491-537
        • O'Donnell N.
        Intracellular glycosylation and development.
        Biochim Biophys Acta. 2002; 1573: 336-345
        • Walsh G.
        • Jefferis R.
        Post-translational modifications in the context of therapeutic proteins.
        Nat Biotechnol. 2006; 24: 1241-1252
        • Harvey D.J.
        Proteomic analysis of glycosylation: structural determination of N- and O-linked glycans by mass spectrometry.
        Expert Rev Proteomics. 2005; 2: 87-101
        • Xiong L.
        • Andrews D.
        • Regnier F.
        Comparative proteomics of glycoproteins based on lectin selection and isotope coding.
        J Proteome Res. 2003; 2: 618-625
        • Cohen P.
        The regulation of protein function by multisite phosphorylation–a 25 year update.
        Trends Biochem Sci. 2000; 25: 596-601
        • Fukuoka M.
        • Yano S.
        • Giaccone G.
        • et al.
        Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial).
        J Clin Oncol. 2003; 21 ([corrected]): 2237-2246
        • Kris M.G.
        • Natale R.B.
        • Herbst R.S.
        • et al.
        Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial.
        JAMA. 2003; 290: 2149-2158
        • Turkina M.V.
        • Vener A.V.
        Identification of phosphorylated proteins.
        Methods Mol Biol. 2006; 355: 305-316
        • Hjerrild M.
        • Gammeltoft S.
        Phosphoproteomics toolbox: computational biology, protein chemistry and mass spectrometry.
        FEBS Lett. 2006; 580: 4764-4770
        • Garcia-Blanco M.A.
        • Baraniak A.P.
        • Lasda E.L.
        Alternative splicing in disease and therapy.
        Nat Biotechnol. 2004; 22: 535-546
        • Jaeken J.
        • Carchon H.
        Congenital disorders of glycosylation: a booming chapter of pediatrics.
        Curr Opin Pediatr. 2004; 16: 434-439
        • Jandeleit-Dahm K.A.
        • Lassila M.
        • Allen T.J.
        Advanced glycation end products in diabetes-associated atherosclerosis and renal disease: interventional studies.
        Ann N Y Acad Sci. 2005; 1043: 759-766
        • Ramasamy R.
        • Vannucci S.J.
        • Yan S.S.
        • et al.
        Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation.
        Glycobiology. 2005; 15: 16R-28R
        • Philips A.V.
        • Cooper T.A.
        RNA processing and human disease.
        Cell Mol Life Sci. 2000; 57: 235-249
        • Srebrow A.
        • Kornblihtt A.R.
        The connection between splicing and cancer.
        J Cell Sci. 2006; 119: 2635-2641
        • Zielenski J.
        • Tsui L.C.
        Cystic fibrosis: genotypic and phenotypic variations.
        Annu Rev Genet. 1995; 29: 777-807
        • Kurinna S.
        • Konopleva M.
        • Palla S.L.
        • et al.
        Bcl2 phosphorylation and active PKC alpha are associated with poor survival in AML.
        Leukemia. 2006; 20: 1316-1319