Advertisement
Advances in Pediatrics

Advances in the Diagnosis and Treatment of Osteoporosis

      Osteoporosis is defined as a systemic skeletal disorder characterized by low bone mass and microarchitectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fractures. Osteoporosis historically has been considered an adult condition because of its increasing incidence with age, affecting one in five postmenopausal women [

      National Osteoporosis Foundation. Impact and overview 2006.

      ]. Osteoporosis is also costly, as the US Surgeon General reported that the estimated annual cost to the United States health system for all osteoporosis-related fractures ranged from $12.2 to $17.9 billion in 2002 [

      United States Department of Health & HumanServices. Bone health and osteoporosis: a report of the Surgeon General, 2006 [article online]. Available at: http://www.surgeongeneral.gov/library/bonehealth. Accessed 11 April, 2006.

      ].
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Pediatrics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. National Osteoporosis Foundation. Impact and overview 2006.

      2. United States Department of Health & HumanServices. Bone health and osteoporosis: a report of the Surgeon General, 2006 [article online]. Available at: http://www.surgeongeneral.gov/library/bonehealth. Accessed 11 April, 2006.

        • Abrams S.A.
        Normal acquisition and loss of bone mass.
        Horm Res. 2003; 60: 71-76
        • Specker B.L.
        • Schoenau E.
        Quantitative bone analysis in children: current methods and recommendations.
        J Pediatr. 2005; 146: 726-731
        • Nieves J.W.
        • Formica C.
        • Ruffing J.
        • et al.
        Males have larger skeletal size and bone mass than females, despite comparable body size.
        J Bone Miner Res. 2005; 20: 529-535
        • Bachrach L.K.
        • Hastie T.
        • Wang M.C.
        • et al.
        Bone mineral acquisition in healthy Asian, Hispanic, Black, and Caucasian youth: a longitudinal study.
        J Clin Endocrinol Metab. 1999; 84: 4702-4712
        • Seeman E.
        • Hopper J.L.
        • Bach L.A.
        • et al.
        Reduced bone mass in daughters of women with osteoporosis.
        N Engl J Med. 1989; 320: 554-558
        • Huang Q.Y.
        • Kung A.W.
        Genetics of osteoporosis.
        Mol Genet Metab. 2006; 88: 295-306
      3. Online Mendelian Inheritance in Man, OMIM 259770, 2001 [article online]. Available at: www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=259770. Accessed 7 December, 2006.

      4. Online Mendelian Inheritance in Man, OMIM 601884, 2006 [article online]. Available at: www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=601884. Accessed 7 December, 2006.

        • Masud T.
        • Mulcahy B.
        • Thompson A.V.
        • et al.
        Effects of cyclical etidronate combined with calcitriol versus cyclical etidronate alone on spine and femoral neck bone mineral density in postmenopausal osteoporotic women.
        Ann Rheum Dis. 1998; 57: 346-349
        • Nieves J.W.
        • Komar L.
        • Cosman F.
        • et al.
        Calcium potentiates the effect of estrogen and calcitonin on bone mass: review and analysis.
        Am J Clin Nutr. 1998; 67: 18-24
        • Buckley L.M.
        • Leib E.S.
        • Cartularo K.S.
        • et al.
        Calcium and vitamin D3 supplementation prevents bone loss in the spine secondary to low-dose corticosteroids in patients with rheumatoid arthritis. A randomized, double-blind, placebo-controlled trial.
        Ann Intern Med. 1996; 125: 961-968
        • Iuliano-Burns S.
        • Saxon L.
        • Naughton G.
        • et al.
        Regional specificity of exercise and calcium during skeletal growth in girls: a randomized controlled trial.
        J Bone Miner Res. 2003; 18: 156-162
        • Viljakainen H.T.
        • Natri A.M.
        • Karkkainen M.
        • et al.
        A positive dose–response effect of vitamin D supplementation on site-specific bone mineral augmentation in adolescent girls: a double-blinded randomized placebo-controlled 1-year intervention.
        J Bone Miner Res. 2006; 21: 836-844
        • Winzenberg T.
        • Shaw K.
        • Fryer J.
        • et al.
        Effects of calcium supplementation on bone density in healthy children: meta-analysis of randomised controlled trials.
        BMJ. 2006; 333: 775
        • Wyshak G.
        Teenaged girls, carbonated beverage consumption, and bone fractures.
        Arch Pediatr Adolesc Med. 2000; 154: 610-613
        • Institute of Medicine
        • Food and Nutrition Board
        Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride.
        National Academy Press, Washington, DC1997
        • Baker S.S.
        • Cochran W.J.
        • Flores C.A.
        • et al.
        American Academy of Pediatrics. Committee on Nutrition. Calcium requirements of infants, children, and adolescents.
        Pediatrics. 1999; 104: 1152-1157
        • Daaboul J.
        • Sanderson S.
        • Kristensen K.
        • et al.
        Vitamin D deficiency in pregnant and breast-feeding women and their infants.
        J Perinatol. 1997; 17: 10-14
        • Delucia M.C.
        • Mitnick M.E.
        • Carpenter T.O.
        Nutritional rickets with normal circulating 25-hydroxyvitamin D: a call for re-examining the role of dietary calcium intake in North American infants.
        J Clin Endocrinol Metab. 2003; 88: 3539-3545
        • Pugliese M.T.
        • Blumberg D.L.
        • Hludzinski J.
        • et al.
        Nutritional rickets in suburbia.
        J Am Coll Nutr. 1998; 17: 637-641
        • El-Hajj F.G.
        • Nabulsi M.
        • Choucair M.
        • et al.
        Hypovitaminosis D in healthy schoolchildren.
        Pediatrics. 2001; 107: E53
        • Lapatsanis D.
        • Moulas A.
        • Cholevas V.
        • et al.
        Vitamin D: a necessity for children and adolescents in Greece.
        Calcif Tissue Int. 2005; 77: 348-355
      5. Institute of Medicine, Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Dietary reference intakes for calcium phosphorus, magnesium, vitamin D and fluoride.
        National Academy Press, Washington, DC1997
        • Hall S.L.
        • Greendale G.A.
        The relation of dietary vitamin C intake to bone mineral density: results from the PEPI study.
        Calcif Tissue Int. 1998; 63: 183-189
        • Shiraki M.
        • Shiraki Y.
        • Aoki C.
        • et al.
        Vitamin K2 (menatetrenone) effectively prevents fractures and sustains lumbar bone mineral density in osteoporosis.
        J Bone Miner Res. 2000; 15: 515-521
        • Fuchs R.K.
        • Bauer J.J.
        • Snow C.M.
        Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial.
        J Bone Miner Res. 2001; 16: 148-156
        • MacKelvie K.J.
        • Khan K.M.
        • Petit M.A.
        • et al.
        A school-based exercise intervention elicits substantial bone health benefits: a 2-year randomized controlled trial in girls.
        Pediatrics. 2003; 112: e447
        • Stear S.J.
        • Prentice A.
        • Jones S.C.
        • et al.
        Effect of a calcium and exercise intervention on the bone mineral status of 16-18-y-old adolescent girls.
        Am J Clin Nutr. 2003; 77: 985-992
        • Rideout C.A.
        • McKay H.A.
        • Barr S.I.
        Self-reported lifetime physical activity and areal bone mineral density in healthy postmenopausal women: the importance of teenage activity.
        Calcif Tissue Int. 2006; 79: 214-222
        • Kanis J.A.
        • Johansson H.
        • Johnell O.
        • et al.
        Alcohol intake as a risk factor for fracture.
        Osteoporos Int. 2005; 16: 737-742
        • Kanis J.A.
        • Johnell O.
        • Oden A.
        • et al.
        Smoking and fracture risk: a meta-analysis.
        Osteoporos Int. 2005; 16: 155-162
        • Ward K.D.
        • Klesges R.C.
        A meta-analysis of the effects of cigarette smoking on bone mineral density.
        Calcif Tissue Int. 2001; 68: 259-270
        • Lorentzon M.
        • Mellstrom D.
        • Haug E.
        • et al.
        Smoking in young men is associated with lower bone mineral density and reduced cortical thickness.
        J Clin Endocrinol Metab. 2007; 92: 497-503
        • Rauch F.
        • Glorieux F.H.
        Bisphosphonate treatment in osteogenesis imperfecta: which drug, for whom, for how long?.
        Ann Med. 2005; 37: 295-302
        • Rauch F.
        • Glorieux F.H.
        Osteogenesis imperfecta, current and future medical treatment.
        Am J Med Genet C Semin Med Genet. 2005; 139: 31-37
        • Marlowe A.
        • Pepin M.G.
        • Byers P.H.
        Testing for osteogenesis imperfecta in cases of suspected nonaccidental injury.
        J Med Genet. 2002; 39: 382-386
        • Glorieux F.H.
        • Ward L.M.
        • Rauch F.
        • et al.
        Osteogenesis imperfecta type VI: a form of brittle bone disease with a mineralization defect.
        J Bone Miner Res. 2002; 17: 30-38
        • Glorieux F.H.
        • Rauch F.
        • Plotkin H.
        • et al.
        Type V osteogenesis imperfecta: a new form of brittle bone disease.
        J Bone Miner Res. 2000; 15: 1650-1658
        • Ward L.M.
        • Rauch F.
        • Travers R.
        • et al.
        Osteogenesis imperfecta type VII: an autosomal recessive form of brittle bone disease.
        Bone. 2002; 31: 12-18
        • Sillence D.O.
        • Senn A.
        • Danks D.M.
        Genetic heterogeneity in osteogenesis imperfecta.
        J Med Genet. 1979; 16: 101-116
        • Silvennoinen J.
        Relationships between vitamin D, parathyroid hormone, and bone mineral density in inflammatory bowel disease.
        J Intern Med. 1996; 239: 131-137
        • Kemppainen T.
        • Kroger H.
        • Janatuinen E.
        • et al.
        Osteoporosis in adult patients with celiac disease.
        Bone. 1999; 24: 249-255
        • Raisz L.G.
        Local and systemic factors in the pathogenesis of osteoporosis.
        N Engl J Med. 1988; 318: 818-828
        • Blanco Q.A.
        • Arranz S.E.
        • Garrote Adrados J.A.
        • et al.
        The tumor necrosis factor system and leptin in coeliac disease.
        An Esp Pediatr. 2001; 55: 198-204
        • Rosen T.
        • Hansson T.
        • Granhed H.
        • et al.
        Reduced bone mineral content in adult patients with growth hormone deficiency.
        Acta Endocrinol (Copenh). 1993; 129: 201-206
        • Holmes S.J.
        • Economou G.
        • Whitehouse R.W.
        • et al.
        Reduced bone mineral density in patients with adult-onset growth hormone deficiency.
        J Clin Endocrinol Metab. 1994; 78: 669-674
        • Nanao K.
        • Tsuchiya Y.
        • Kotoh S.
        • et al.
        Low vertebral cancellous bone density in peri-pubertal girls with Turner's syndrome and boys with hypogonadism.
        J Pediatr Endocrinol Metab. 2002; 15: 1537-1542
        • Yap F.
        • Hogler W.
        • Briody J.
        • et al.
        The skeletal phenotype of men with previous constitutional delay of puberty.
        J Clin Endocrinol Metab. 2004; 89: 4306-4311
        • Lakatos P.
        • Caplice M.D.
        • Khanna V.
        • et al.
        Thyroid hormones increase insulin-like growth factor I content in the medium of rat bone tissue.
        J Bone Miner Res. 1993; 8: 1475-1481
        • Lakatos P.
        • Foldes J.
        • Horvath C.
        • et al.
        Serum interleukin-6 and bone metabolism in patients with thyroid function disorders.
        J Clin Endocrinol Metab. 1997; 82: 78-81
        • Reid I.R.
        Glucocorticoid effects on bone.
        J Clin Endocrinol Metab. 1998; 83: 1860-1862
        • Leong G.M.
        • Mercado-Asis L.B.
        • Reynolds J.C.
        • et al.
        The effect of Cushing's disease on bone mineral density, body composition, growth, and puberty: a report of an identical adolescent twin pair.
        J Clin Endocrinol Metab. 1996; 81: 1905-1911
        • Weinstein R.S.
        • Jilka R.L.
        • Parfitt A.M.
        • et al.
        Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone.
        J Clin Invest. 1998; 102: 274-282
        • Sasaki N.
        • Kusano E.
        • Ando Y.
        • et al.
        Glucocorticoid decreases circulating osteoprotegerin (OPG): possible mechanism for glucocorticoid-induced osteoporosis.
        Nephrol Dial Transplant. 2001; 16: 479-482
        • Canalis E.
        • Centrella M.
        • Burch W.
        • et al.
        Insulin-like growth factor I mediates selective anabolic effects of parathyroid hormone in bone cultures.
        J Clin Invest. 1989; 83: 60-65
        • Linkhart T.A.
        • Mohan S.
        Parathyroid hormone stimulates release of insulin-like growth factor-I (IGF-I) and IGF-II from neonatal mouse calvaria in organ culture.
        Endocrinology. 1989; 125: 1484-1491
        • Jilka R.L.
        • Weinstein R.S.
        • Bellido T.
        • et al.
        Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone.
        J Clin Invest. 1999; 104: 439-446
        • Locklin R.M.
        • Khosla S.
        • Turner R.T.
        • et al.
        Mediators of the biphasic responses of bone to intermittent and continuously administered parathyroid hormone.
        J Cell Biochem. 2003; 89: 180-190
        • Ma Y.L.
        • Cain R.L.
        • Halladay D.L.
        • et al.
        Catabolic effects of continuous human PTH (1–38) in vivo is associated with sustained stimulation of RANKL and inhibition of osteoprotegerin and gene-associated bone formation.
        Endocrinology. 2001; 142: 4047-4054
        • Horwitz M.J.
        • Tedesco M.B.
        • Sereika S.M.
        • et al.
        Continuous PTH and PTHrP infusion causes suppression of bone formation and discordant effects on 1,25(OH)2 vitamin D.
        J Bone Miner Res. 2005; 20: 1792-1803
        • Lawson M.L.
        • Miller S.F.
        • Ellis G.
        • et al.
        Primary hyperparathyroidism in a paediatric hospital.
        QJM. 1996; 89: 921-932
        • Hsu S.C.
        • Levine M.A.
        Primary hyperparathyroidism in children and adolescents: the Johns Hopkins Children's Center experience 1984-2001.
        J Bone Miner Res. 2002; 17: N44-N50
        • Kollars J.
        • Zarroug A.E.
        • van H.J.
        • et al.
        Primary hyperparathyroidism in pediatric patients.
        Pediatrics. 2005; 115: 974-980
        • Krishnamoorthy P.
        • Freeman C.
        • Bernstein M.L.
        • et al.
        Osteopenia in children who have undergone posterior fossa or craniospinal irradiation for brain tumors.
        Arch Pediatr Adolesc Med. 2004; 158: 491-496
        • Kelly J.
        • Damron T.
        • Grant W.
        • et al.
        Cross-sectional study of bone mineral density in adult survivors of solid pediatric cancers.
        J Pediatr Hematol Oncol. 2005; 27: 248-253
        • Athanassiadou F.
        • Tragiannidis A.
        • Rousso I.
        • et al.
        Bone mineral density in survivors of childhood acute lymphoblastic leukemia.
        Turk J Pediatr. 2006; 48: 101-104
        • van der Sluis I.M.
        • van den Heuvel-Eibrink M.M.
        • Hahlen K.
        • et al.
        Altered bone mineral density and body composition, and increased fracture risk in childhood acute lymphoblastic leukemia.
        J Pediatr. 2002; 141: 204-210
        • Lequin M.H.
        • van der Sluis I.M.
        • Van Rijn R.R.
        • et al.
        Bone mineral assessment with tibial ultrasonometry and dual-energy X-ray absorptiometry in long-term survivors of acute lymphoblastic leukemia in childhood.
        J Clin Densitom. 2002; 5: 167-173
        • Kadan-Lottick N.
        • Marshall J.A.
        • Baron A.E.
        • et al.
        Normal bone mineral density after treatment for childhood acute lymphoblastic leukemia diagnosed between 1991 and 1998.
        J Pediatr. 2001; 138: 898-904
        • Ruza E.
        • Sierrasesumaga L.
        • Azcona C.
        • et al.
        Bone mineral density and bone metabolism in children treated for bone sarcomas.
        Pediatr Res. 2006; 59: 866-871
        • Bachrach L.K.
        • Guido D.
        • Katzman D.
        • et al.
        Decreased bone density in adolescent girls with anorexia nervosa.
        Pediatrics. 1990; 86: 440-447
        • Grinspoon S.
        • Miller K.
        • Coyle C.
        • et al.
        Severity of osteopenia in estrogen-deficient women with anorexia nervosa and hypothalamic amenorrhea.
        J Clin Endocrinol Metab. 1999; 84: 2049-2055
        • Misra M.
        • Miller K.K.
        • Almazan C.
        • et al.
        Alterations in cortisol secretory dynamics in adolescent girls with anorexia nervosa and effects on bone metabolism.
        J Clin Endocrinol Metab. 2004; 89: 4972-4980
        • Rigotti N.A.
        • Nussbaum S.R.
        • Herzog D.B.
        • et al.
        Osteoporosis in women with anorexia nervosa.
        N Engl J Med. 1984; 311: 1601-1606
        • Herzog W.
        • Minne H.
        • Deter C.
        • et al.
        Outcome of bone mineral density in anorexia nervosa patients 11.7 years after first admission.
        J Bone Miner Res. 1993; 8: 597-605
        • King W.
        • Levin R.
        • Schmidt R.
        • et al.
        Prevalence of reduced bone mass in children and adults with spastic quadriplegia.
        Dev Med Child Neurol. 2003; 45: 12-16
      6. World Health Organization (WHO): assessment of fracture risk and its application to screening for postmenopausal osteoporosis: report of the WHO study group. Geneva (IL); 1994. WHO Technical Report Series 843. WHO.

      7. The Writing Group for the ISCD Position Conference. Diagnosis of osteoporosis in men, premenopausal women, and children.
        J Clin Densitom. 2004; 7: 17-26
        • Mora S.
        • Bachrach L.
        • Gilsanz V.
        Noninvasive techniques for bone mass measurement.
        in: Glorieux F.H. Pettifor J.M. Juppner H. Pediatric bone: biology and diseases. Academic Press, San Diego (CA)2003: 303-324
        • Bachrach L.K.
        Measuring bone mass in children: can we really do it?.
        Horm Res. 2006; 65: 11-16
        • Leonard M.B.
        • Shults J.
        • Elliott D.M.
        • et al.
        Interpretation of whole body dual energy X-ray absorptiometry measures in children: comparison with peripheral quantitative computed tomography.
        Bone. 2004; 34: 1044-1052
        • Hudelmaier M.
        • Kuhn V.
        • Lochmuller E.M.
        • et al.
        Can geometry-based parameters from pQCT and material parameters from quantitative ultrasound (QUS) improve the prediction of radial bone strength over that by bone mass (DXA)?.
        Osteoporos Int. 2004; 15: 375-381
        • Njeh C.F.
        • Boivin C.M.
        • Langton C.M.
        The role of ultrasound in the assessment of osteoporosis: a review.
        Osteoporos Int. 1997; 7: 7-22
        • Goulding A.
        • Cannan R.
        • Williams S.M.
        • et al.
        Bone mineral density in girls with forearm fractures.
        J Bone Miner Res. 1998; 13: 143-148
        • Goulding A.
        • Jones I.E.
        • Taylor R.W.
        • et al.
        More broken bones: a 4-year double cohort study of young girls with and without distal forearm fractures.
        J Bone Miner Res. 2000; 15: 2011-2018
        • Skaggs D.L.
        • Loro M.L.
        • Pitukcheewanont P.
        • et al.
        Increased body weight and decreased radial cross-sectional dimensions in girls with forearm fractures.
        J Bone Miner Res. 2001; 16: 1337-1342
        • Henderson R.C.
        • Lin P.P.
        • Greene W.B.
        Bone mineral density in children and adolescents who have spastic cerebral palsy.
        J Bone Joint Surg Am. 1995; 77: 1671-1681
        • Bianchi M.L.
        • Mazzanti A.
        • Galbiati E.
        • et al.
        Bone mineral density and bone metabolism in Duchenne muscular dystrophy.
        Osteoporos Int. 2003; 14: 761-767
        • Aris R.M.
        • Merkel P.A.
        • Bachrach L.K.
        • et al.
        Guide to bone health and disease in cystic fibrosis.
        J Clin Endocrinol Metab. 2005; 90: 1888-1896
        • Nishizawa Y.
        • Nakamura T.
        • Ohata H.
        • et al.
        Guidelines on the use of biochemical markers of bone turnover in osteoporosis (2001).
        J Bone Miner Metab. 2001; 19: 338-344
        • Melton III, L.J.
        • Khosla S.
        • Atkinson E.J.
        • et al.
        Relationship of bone turnover to bone density and fractures.
        J Bone Miner Res. 1997; 12: 1083-1091
        • Garnero P.
        • Delmas P.D.
        Biochemical markers of bone turnover. Applications for osteoporosis.
        Endocrinol Metab Clin North Am. 1998; 27: 303-323
        • Donescu O.S.
        • Battie M.C.
        • Videman T.
        • et al.
        The predictive role of bone turnover markers for BMD in middle-aged men.
        Aging Male. 2006; 9: 97-102
        • Gordon C.M.
        • Bachrach L.K.
        • Carpenter T.O.
        • et al.
        Bone health in children and adolescents: a symposium at the annual meeting of the Pediatric Academic Societies/Lawson Wilkins Pediatric Endocrine Society, May 2003.
        Curr Probl Pediatr Adolesc Health Care. 2004; 34: 226-242
        • Glorieux F.H.
        • Bishop N.J.
        • Plotkin H.
        • et al.
        Cyclic administration of pamidronate in children with severe osteogenesis imperfecta.
        N Engl J Med. 1998; 339: 947-952
        • Plotkin H.
        • Rauch F.
        • Bishop N.J.
        • et al.
        Pamidronate treatment of severe osteogenesis imperfecta in children under 3 years of age.
        J Clin Endocrinol Metab. 2000; 85: 1846-1850
        • Bianchi M.L.
        • Cimaz R.
        • Bardare M.
        • et al.
        Efficacy and safety of alendronate for the treatment of osteoporosis in diffuse connective tissue diseases in children: a prospective multicenter study.
        Arthritis Rheum. 2000; 43: 1960-1966
        • Henderson R.C.
        • Lark R.K.
        • Kecskemethy H.H.
        • et al.
        Bisphosphonates to treat osteopenia in children with quadriplegic cerebral palsy: a randomized, placebo-controlled clinical trial.
        J Pediatr. 2002; 141: 644-651
        • Matarazzo P.
        • Lala R.
        • Masi G.
        • et al.
        Pamidronate treatment in bone fibrous dysplasia in children and adolescents with McCune-Albright syndrome.
        J Pediatr Endocrinol Metab. 2002; 15: 929-937
        • Astrom E.
        • Soderhall S.
        Beneficial effect of long-term intravenous bisphosphonate treatment of osteogenesis imperfecta.
        Arch Dis Child. 2002; 86: 356-364
        • Zacharin M.
        • Bateman J.
        Pamidronate treatment of osteogenesis imperfecta—lack of correlation between clinical severity, age at onset of treatment, predicted collagen mutation, and treatment response.
        J Pediatr Endocrinol Metab. 2002; 15: 163-174
        • Rauch F.
        • Plotkin H.
        • Zeitlin L.
        • et al.
        Bone mass, size, and density in children and adolescents with osteogenesis imperfecta: effect of intravenous pamidronate therapy.
        J Bone Miner Res. 2003; 18: 610-614
        • Montpetit K.
        • Plotkin H.
        • Rauch F.
        • et al.
        Rapid increase in grip force after start of pamidronate therapy in children and adolescents with severe osteogenesis imperfecta.
        Pediatrics. 2003; 111: e601-e603
        • Land C.
        • Rauch F.
        • Montpetit K.
        • et al.
        Effect of intravenous pamidronate therapy on functional abilities and level of ambulation in children with osteogenesis imperfecta.
        J Pediatr. 2006; 148: 456-460
        • Zeitlin L.
        • Rauch F.
        • Plotkin H.
        • et al.
        Height and weight development during four years of therapy with cyclical intravenous pamidronate in children and adolescents with osteogenesis imperfecta types I, III, and IV.
        Pediatrics. 2003; 111: 1030-1036
        • Steelman J.
        • Zeitler P.
        Treatment of symptomatic pediatric osteoporosis with cyclic single-day intravenous pamidronate infusions.
        J Pediatr. 2003; 142: 417-423
        • Hogler W.
        • Yap F.
        • Little D.
        • et al.
        Short-term safety assessment in the use of intravenous zoledronic acid in children.
        J Pediatr. 2004; 145: 701-704
        • Fernandes J.L.
        • Viana S.L.
        • Rocha A.L.
        • et al.
        Bisphosphonate-induced radiographic changes in two pediatric patients with rheumatic diseases.
        Skeletal Radiol. 2004; 33: 732-736
        • Dimeglio L.A.
        • Peacock M.
        Two-year clinical trial of oral alendronate versus intravenous pamidronate in children with osteogenesis imperfecta.
        J Bone Miner Res. 2006; 21: 132-140
        • Zeitlin L.
        • Fassier F.
        • Glorieux F.H.
        Modern approach to children with osteogenesis imperfecta.
        J Pediatr Orthop B. 2003; 12: 77-87
        • Engelbert R.H.
        • Pruijs H.E.
        • Beemer F.A.
        • et al.
        Osteogenesis imperfecta in childhood: treatment strategies.
        Arch Phys Med Rehabil. 1998; 79: 1590-1594
        • Arikoski P.
        • Silverwood B.
        • Tillmann V.
        • et al.
        Intravenous pamidronate treatment in children with moderate-to-severe osteogenesis imperfecta: assessment of indices of dual-energy X-ray absorptiometry and bone metabolic markers during the first year of therapy.
        Bone. 2004; 34: 539-546
        • Munns C.F.
        • Rauch F.
        • Travers R.
        • et al.
        Effects of intravenous pamidronate treatment in infants with osteogenesis imperfecta: clinical and histomorphometric outcome.
        J Bone Miner Res. 2005; 20: 1235-1243
        • Gatti D.
        • Antoniazzi F.
        • Prizzi R.
        • et al.
        Intravenous neridronate in children with osteogenesis imperfecta: a randomized controlled study.
        J Bone Miner Res. 2005; 20: 758-763
        • Rauch F.
        • Travers R.
        • Plotkin H.
        • et al.
        The effects of intravenous pamidronate on the bone tissue of children and adolescents with osteogenesis imperfecta.
        J Clin Invest. 2002; 110: 1293-1299
        • Wellington K.
        • Goa K.L.
        Zoledronic acid: a review of its use in the management of bone metastases and hypercalcaemia of malignancy.
        Drugs. 2003; 63: 417-437
        • Batch J.A.
        • Couper J.J.
        • Rodda C.
        • et al.
        Use of bisphosphonate therapy for osteoporosis in childhood and adolescence.
        J Paediatr Child Health. 2003; 39: 88-92
        • Rauch F.
        • Travers R.
        • Glorieux F.H.
        Pamidronate in children with osteogenesis imperfecta: histomorphometric effects of long-term therapy.
        J Clin Endocrinol Metab. 2006; 91: 511-516
        • Van Staa T.P.
        The pathogenesis, epidemiology, and management of glucocorticoid-induced osteoporosis.
        Calcif Tis Int. 2006; 75: 129-137
        • Brown J.J.
        • Zacharin M.R.
        Attempted randomized controlled trial of pamidronate versus calcium and calcitriol supplements for management of steroid-induced osteoporosis in children and adolescents.
        J Paediatr Child Health. 2005; 41: 580-582
        • Plotkin H.
        • Coughlin S.
        • Kreikemeier R.
        • et al.
        Low doses of pamidronate to treat osteopenia in children with severe cerebral palsy: a pilot study.
        Dev Med Child Neurol. 2006; 48: 709-712
        • Sholas M.G.
        • Tann B.
        • Gaebler-Spira D.
        Oral bisphosphonates to treat disuse osteopenia in children with disabilities: a case series.
        J Pediatr Orthop. 2005; 25: 326-331
        • Adami S.
        • Zamberlan N.
        Adverse effects of bisphosphonates. A comparative study.
        Drug Saf. 1996; 14: 158-170
        • Robinson R.E.
        • Nahata M.C.
        • Hayes J.R.
        • et al.
        Effectiveness of pretreatment in decreasing adverse events associated with pamidronate in children and adolescents.
        Pharmacotherapy. 2004; 24: 195-197
        • Munns C.F.
        • Rauch F.
        • Zeitlin L.
        • et al.
        Delayed osteotomy but not fracture healing in pediatric osteogenesis imperfecta patients receiving pamidronate.
        J Bone Miner Res. 2004; 19: 1779-1786
        • Pickett F.A.
        • American Academy of Oral Medicine
        Bisphosphonate-associated osteonecrosis of the jaw: a literature review and clinical practice guidelines.
        J Dent Hyg. 2006; 80: 10
        • Whyte M.P.
        • Wenkert D.
        • Clements K.L.
        • et al.
        Bisphosphonate-induced osteopetrosis.
        N Engl J Med. 2003; 349: 457-463
        • Rosen C.J.
        • Donahue L.R.
        Insulin-like growth factors and bone: the osteoporosis connection revisited.
        Proc Soc Exp Biol Med. 1998; 219: 1-7
        • Holloway L.
        • Butterfield G.
        • Hintz R.L.
        • et al.
        Effects of recombinant human growth hormone on metabolic indices, body composition, and bone turnover in healthy elderly women.
        J Clin Endocrinol Metab. 1994; 79: 470-479
        • Grinspoon S.
        • Baum H.
        • Lee K.
        • et al.
        Effects of short-term recombinant human insulin-like growth factor I administration on bone turnover in osteopenic women with anorexia nervosa.
        J Clin Endocrinol Metab. 1996; 81: 3864-3870
        • Hardin D.S.
        • Ahn C.
        • Prestidge C.
        • et al.
        Growth hormone improves bone mineral content in children with cystic fibrosis.
        J Pediatr Endocrinol Metab. 2005; 18: 589-595
        • Hardin D.S.
        • Ferkol T.
        • Ahn C.
        • et al.
        A retrospective study of growth hormone use in adolescents with cystic fibrosis.
        Clin Endocrinol (Oxf). 2005; 62: 560-566
        • Rubin M.R.
        • Bilezikian J.P.
        New anabolic therapies in osteoporosis.
        Endocrinol Metab Clin North Am. 2003; 32: 285-307
        • Neer R.M.
        • Arnaud C.D.
        • Zanchetta J.R.
        • et al.
        Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis.
        N Engl J Med. 2001; 344: 1434-1441
        • Lindsay R.
        • Nieves J.
        • Formica C.
        • et al.
        Randomised controlled study of effect of parathyroid hormone on vertebral bone mass and fracture incidence among postmenopausal women on oestrogen with osteoporosis.
        Lancet. 1997; 350: 550-555
        • Orwoll E.S.
        • Scheele W.H.
        • Paul S.
        • et al.
        The effect of teriparatide [human parathyroid hormone (1-34)] therapy on bone density in men with osteoporosis.
        J Bone Miner Res. 2003; 18: 9-17
        • Lane N.E.
        • Sanchez S.
        • Modin G.W.
        • et al.
        Parathyroid hormone treatment can reverse corticosteroid-induced osteoporosis. Results of a randomized controlled clinical trial.
        J Clin Invest. 1998; 102: 1627-1633
        • Johnson A.R.
        • Armstrong W.D.
        • Singer L.
        The incorporation and removal of large amounts of strontium by physiologic mechanisms in mineralized tissues.
        Calcif Tissue Res. 1968; 2: 242-252
        • Li L.
        • Kruszewski F.H.
        • Punnonen K.
        • et al.
        Strontium induces murine keratinocyte differentiation in vitro in the presence of serum and calcium.
        J Cell Physiol. 1993; 154: 643-653
        • Meunier P.J.
        • Roux C.
        • Seeman E.
        • et al.
        The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis.
        N Engl J Med. 2004; 350: 459-468
        • Edwards C.J.
        • Hart D.J.
        • Spector T.D.
        Oral statins and increased bone mineral density in postmenopausal women.
        Lancet. 2000; 355: 2218-2219
        • Wang P.S.
        • Solomon D.H.
        • Mogun H.
        • et al.
        HMG-CoA reductase inhibitors and the risk of hip fractures in elderly patients.
        JAMA. 2000; 283: 3211-3216
        • Chan M.H.
        • Mak T.W.
        • Chiu R.W.
        • et al.
        Simvastatin increases serum osteocalcin concentration in patients treated for hypercholesterolaemia.
        J Clin Endocrinol Metab. 2001; 86: 4556-4559
        • Grasser W.A.
        • Baumann A.P.
        • Petras S.F.
        • et al.
        Regulation of osteoclast differentiation by statins.
        J Musculoskelet Neuronal Interact. 2003; 3: 53-62
        • Pak C.Y.
        • Zerwekh J.E.
        • Antich P.P.
        • et al.
        Slow-release sodium fluoride in osteoporosis.
        J Bone Miner Res. 1996; 11: 561-564
        • Riggs B.L.
        • O'Fallon W.M.
        • Lane A.
        • et al.
        Clinical trial of fluoride therapy in postmenopausal osteoporotic women: extended observations and additional analysis.
        J Bone Miner Res. 1994; 9: 265-275
        • Alexandersen P.
        • Riis B.J.
        • Christiansen C.
        Monofluorophosphate combined with hormone replacement therapy induces a synergistic effect on bone mass by dissociating bone formation and resorption in postmenopausal women: a randomized study.
        J Clin Endocrinol Metab. 1999; 84: 3013-3020
        • Ringe J.D.
        • Rovati L.C.
        Treatment of osteoporosis in men with fluoride alone or in combination with bisphosphonates.
        Calcif Tissue Int. 2001; 69: 252-255
        • Bassin E.B.
        • Wypij D.
        • Davis R.B.
        • et al.
        Age-specific fluoride exposure in drinking water and osteosarcoma (United States).
        Cancer Causes Control. 2006; 17: 421-428