Advances in Pediatrics


  • Nadja C. Colon
    Department of Pediatric Surgery, Vanderbilt University Medical Center, 2200 Children’s Way, Suite 7100, Nashville, TN 37232, USA
    Search for articles by this author
  • Dai H. Chung
    Corresponding author. Department of Pediatric Surgery, Vanderbilt University Medical Center, 2200 Children’s Way, Suite 7100, Nashville, TN 37232.
    Department of Pediatric Surgery, Vanderbilt University Medical Center, 2200 Children’s Way, Suite 7100, Nashville, TN 37232, USA

    Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
    Search for articles by this author
      In the discipline of pediatric cancer biology, neuroblastoma signifies an oncologic conundrum given the clinical range with which it presents. Prognosis correlates with age and the degree of differentiation, and thus, outcomes vary from high rates of survival (with possible tumor regression) to recurrence and mortality. Although the standard of treatment is a combination of chemotherapy, radiation, and surgical resection, there is growing evidence that aggressive neuroblastomas are resistant to our therapies. To this end, research has been focused on the molecular mechanisms behind differentiation, cell survival and apoptosis, angiogenesis, and metastasis to elucidate where the process goes awry. The basis of this research has led to the development of novel therapies that are directed toward key targets, some of which are quite promising. While discussing clinical background, this article aims to provide a synopsis of the latest, up-and-coming developments in the field of neuroblastoma.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Advances in Pediatrics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Park J.R.
        • Eggert A.
        • Caron H.
        Neuroblastoma: biology, prognosis, and treatment.
        Hematol Oncol Clin North Am. 2010; 24: 65-86
        • Maris J.M.
        Recent advances in neuroblastoma.
        N Engl J Med. 2010; 362: 2202-2211
        • Esiashvili N.
        • Anderson C.
        • Katzenstein H.M.
        Curr Probl Cancer. 2009; 33: 333-360
        • Brodeur G.M.
        Neuroblastoma: biological insights into a clinical enigma.
        Nat Rev Cancer. 2003; 3: 203-216
        • London W.B.
        • Matthay K.K.
        • Ambros P.F.
        • et al.
        Clinical and biological features predictive of survival after relapse of neuroblastoma: a study from the International Neuroblastoma (NB) Risk Group (INRG) Database.
        J Clin Oncol. 2010; 28: 9518
        • Kushner B.H.
        Neuroblastoma: a disease requiring a multitude of imaging studies.
        J Nucl Med. 2004; 45: 1172-1188
        • Haase G.M.
        • LaQuaglia M.P.
        in: Ziegler M.M. Azizkhan R.G. Weber T.R. Operative pediatric surgery. McGraw-Hill, New York2003: 1181-1192
        • Ishola T.A.
        • Chung D.H.
        Surg Oncol. 2007; 16: 149-156
        • Darnell R.B.
        • Posner J.B.
        Paraneoplastic syndromes involving the nervous system.
        N Engl J Med. 2003; 349: 1543-1554
        • Goto S.
        • Umehara S.
        • Gerbing R.B.
        • et al.
        Histopathology (International Neuroblastoma Pathology Classification) and MYCN status in patients with peripheral neuroblastic tumors: a report from the Children’s Cancer Group.
        Cancer. 2001; 92: 2699-2708
        • Janoueix-Lerosey I.
        • Schleiermacher G.
        • Delattre O.
        Molecular pathogenesis of peripheral neuroblastic tumors.
        Oncogene. 2010; 29: 1566-1579
        • Maris J.M.
        The biologic basis for neuroblastoma heterogeneity and risk stratification.
        Curr Opin Pediatr. 2005; 17: 7-13
        • Monclair T.
        • Brodeur G.M.
        • Ambros P.F.
        • et al.
        The International Neuroblastoma Risk Group (INRG) staging system: an INRG Task Force report.
        J Clin Oncol. 2009; 27: 298-303
        • Cohn S.L.
        • Pearson A.D.
        • London W.B.
        • et al.
        The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report.
        J Clin Oncol. 2009; 27: 289-297
        • Kim S.
        • Chung D.H.
        Pediatric solid malignancies: neuroblastoma and Wilms’ tumor.
        Surg Clin North Am. 2006; 86 (xi): 469-487
        • Van Roy N.
        • De Preter K.
        • Hoebeeck J.
        • et al.
        The emerging molecular pathogenesis of neuroblastoma: implications for improved risk assessment and targeted therapy.
        Genome Med. 2009; 1: 74
        • Fujita T.
        • Igarashi J.
        • Okawa E.R.
        • et al.
        CHD5, a tumor suppressor gene deleted from 1p36.31 in neuroblastomas.
        J Natl Cancer Inst. 2008; 100: 940-949
        • Vandesompele J.
        • Baudis M.
        • De Preter K.
        • et al.
        Unequivocal delineation of clinicogenetic subgroups and development of a new model for improved outcome prediction in neuroblastoma.
        J Clin Oncol. 2005; 23: 2280-2299
        • Kelleher F.C.
        • McDermott R.
        The emerging pathogenic and therapeutic importance of the anaplastic lymphoma kinase gene.
        Eur J Cancer. 2010; 46: 2357-2368
        • Modak S.
        • Cheung N.K.
        Neuroblastoma: therapeutic strategies for a clinical enigma.
        Cancer Treat Rev. 2010; 36: 307-317
        • Bell E.
        • Chen L.
        • Liu T.
        • et al.
        MYCN oncoprotein targets and their therapeutic potential.
        Cancer Lett. 2010; 293: 144-157
        • Taggart D.R.
        • Han M.M.
        • Quach A.
        • et al.
        Comparison of iodine-123 metaiodobenzylguanidine (MIBG) scan and [18F]fluorodeoxyglucose positron emission tomography to evaluate response after iodine-131 MIBG therapy for relapsed neuroblastoma.
        J Clin Oncol. 2009; 27: 5343-5349
        • Peaston A.E.
        • Gardaneh M.
        • Franco A.V.
        • et al.
        MRP1 gene expression level regulates the death and differentiation response of neuroblastoma cells.
        Br J Cancer. 2001; 85: 1564-1571
        • Yalcin B.
        • Kremer L.C.
        • Caron H.N.
        • et al.
        High-dose chemotherapy and autologous haematopoietic stem cell rescue for children with high-risk neuroblastoma.
        Cochrane Database Syst Rev. 2010; 5 (CD006301)
        • Reynolds C.P.
        • Matthay K.K.
        • Villablanca J.G.
        • et al.
        Retinoid therapy of high-risk neuroblastoma.
        Cancer Lett. 2003; 197: 185-192
        • Kang T.I.
        • Brophy P.
        • Hickeson M.
        • et al.
        Targeted radiotherapy with submyeloablative doses of 131I-MIBG is effective for disease palliation in highly refractory neuroblastoma.
        J Pediatr Hematol Oncol. 2003; 25: 769-773
        • Matthay K.K.
        • Yanik G.
        • Messina J.
        • et al.
        Phase II study on the effect of disease sites, age, and prior therapy on response to iodine-131-metaiodobenzylguanidine therapy in refractory neuroblastoma.
        J Clin Oncol. 2007; 25: 1054-1060
        • Wagner L.M.
        • Danks M.K.
        New therapeutic targets for the treatment of high-risk neuroblastoma.
        J Cell Biochem. 2009; 107: 46-57
        • Wu J.M.
        • DiPietrantonio A.M.
        • Hsieh T.C.
        Mechanism of fenretinide (4-HPR)-induced cell death.
        Apoptosis. 2001; 6: 377-388
        • Yip C.K.
        • Murata K.
        • Walz T.
        • et al.
        Structure of the human mTOR complex I and its implications for rapamycin inhibition.
        Mol Cell. 2010; 38: 768-774
        • Coulter D.W.
        • Blatt J.
        • D’Ercole A.J.
        • et al.
        IGF-I receptor inhibition combined with rapamycin or temsirolimus inhibits neuroblastoma cell growth.
        Anticancer Res. 2008; 28: 1509-1516
        • Moore A.S.
        • Blagg J.
        • Linardopoulos S.
        • et al.
        Aurora kinase inhibitors: novel small molecules with promising activity in acute myeloid and Philadelphia-positive leukemias.
        Leukemia. 2010; 24: 671-678
        • Gorgun G.
        • Calabrese E.
        • Hideshima T.
        • et al.
        A novel Aurora-A kinase inhibitor MLN8237 induces cytotoxicity and cell-cycle arrest in multiple myeloma.
        Blood. 2010; 115: 5202-5213
        • Brodeur G.M.
        • Minturn J.E.
        • Ho R.
        • et al.
        Trk receptor expression and inhibition in neuroblastomas.
        Clin Cancer Res. 2009; 15: 3244-3250
        • Thiele C.J.
        • Li Z.
        • McKee A.E.
        On Trk–the TrkB signal transduction pathway is an increasingly important target in cancer biology.
        Clin Cancer Res. 2009; 15: 5962-5967
        • Kushner B.H.
        • Kramer K.
        • Cheung N.K.
        Phase II trial of the anti-G(D2) monoclonal antibody 3F8 and granulocyte-macrophage colony-stimulating factor for neuroblastoma.
        J Clin Oncol. 2001; 19: 4189-4194
        • Ozkaynak M.F.
        • Sondel P.M.
        • Krailo M.D.
        • et al.
        Phase I study of chimeric human/murine anti-ganglioside G(D2) monoclonal antibody (ch14.18) with granulocyte-macrophage colony-stimulating factor in children with neuroblastoma immediately after hematopoietic stem-cell transplantation: a Children’s Cancer Group Study.
        J Clin Oncol. 2000; 18: 4077-4085
        • Yu A.L.
        • Gilman A.L.
        • Ozkaynak M.F.
        • et al.
        Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma.
        N Engl J Med. 2010; 363: 1324-1334
        • Shusterman S.
        • Grupp S.A.
        • Barr R.
        • et al.
        The angiogenesis inhibitor tnp-470 effectively inhibits human neuroblastoma xenograft growth, especially in the setting of subclinical disease.
        Clin Cancer Res. 2001; 7: 977-984
        • Barbieri E.
        • Mehta P.
        • Chen Z.
        • et al.
        MDM2 inhibition sensitizes neuroblastoma to chemotherapy-induced apoptotic cell death.
        Mol Cancer Ther. 2006; 5: 2358-2365
        • Slack A.
        • Lozano G.
        • Shohet J.M.
        MDM2 as MYCN transcriptional target: implications for neuroblastoma pathogenesis.
        Cancer Lett. 2005; 228: 21-27
        • Van Maerken T.
        • Speleman F.
        • Vermeulen J.
        • et al.
        Small-molecule MDM2 antagonists as a new therapy concept for neuroblastoma.
        Cancer Res. 2006; 66: 9646-9655
        • Casero Jr., R.A.
        • Marton L.J.
        Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases.
        Nat Rev Drug Discov. 2007; 6: 373-390
        • Hogarty M.D.
        • Norris M.D.
        • Davis K.
        • et al.
        ODC1 is a critical determinant of MYCN oncogenesis and a therapeutic target in neuroblastoma.
        Cancer Res. 2008; 68: 9735-9745
        • Kim S.
        • Hu W.
        • Kelly D.R.
        • et al.
        Gastrin-releasing peptide is a growth factor for human neuroblastomas.
        Ann Surg. 2002; 235 ([discussion: 629–30]): 621-629
        • Kang J.
        • Ishola T.A.
        • Baregamian N.
        • et al.
        Bombesin induces angiogenesis and neuroblastoma growth.
        Cancer Lett. 2007; 253: 273-281
        • Qiao J.
        • Kang J.
        • Ishola T.A.
        • et al.
        Gastrin-releasing peptide receptor silencing suppresses the tumorigenesis and metastatic potential of neuroblastoma.
        Proc Natl Acad Sci U S A. 2008; 105: 12891-12896